الاختبار النهائي في مقياس الميكانيك الكمي

التمرين الأول:

حسب Heisenberg:

\[\Delta x \Delta p_x \geq \frac{h}{2}, \quad \Delta y \Delta p_y \geq \frac{h}{2}, \quad \Delta z \Delta p_z \geq \frac{h}{2} \]

و منه أصغر ارتباط في مركبات الإندفاع:

\[\Delta p_x = \frac{h}{2\Delta x} = \frac{h}{2a_0}, \quad \Delta p_y = \frac{h}{2\Delta y} = \frac{h}{2a_0}, \quad \Delta p_z = \frac{h}{2\Delta z} = \frac{h}{2a_0} \]

(1)

2. لدينا:

\[\Delta p_x = \sqrt{\langle p_x^2 \rangle - \langle p_x \rangle^2} = \sqrt{\langle p_y^2 \rangle - \langle p_y \rangle^2} = \sqrt{\langle p_z^2 \rangle - \langle p_z \rangle^2} \]

حيث استخدمنا: \(\langle p_x \rangle = \langle p_y \rangle = \langle p_z \rangle = 0 \)

و لدينا القيمة الوسطية للطاقة الحركية:

\[\langle E \rangle = \frac{\langle p^2 \rangle}{2m_e} = \frac{\langle p^2_x \rangle + \langle p^2_y \rangle + \langle p^2_z \rangle}{2m_e} = \left(\Delta p_x^2 + \Delta p_y^2 + \Delta p_z^2 \right) = \frac{3 \times h^2}{2m_e 4a_0^2} = \frac{3h^2}{8m_e a_0^2} \]

و منه:

\[\langle E \rangle = \frac{3(hc)^2}{8m_e c^2 a_0^2} = \frac{8}{3} \times \frac{(1970)^2 eV^2 \cdot A^2}{0.511 \times 10^6 eV \times 0.53^2 A^2} = 10 eV \]

(2)

3. غير متبادل معناه:

\[\hat{A} \hat{B} \neq \hat{B} \hat{A} \quad \text{أو} \quad [\hat{A}, \hat{B}] \neq 0 \]

و غير متبادل يستلزم أنه لا يمكن قياس اللحظة في أن واحد (أو: هناك قانون ارتباط \(B \) بين \(A \) جيد).

مثال على مؤثرات غير متبادلة: مؤثر الفوضى \(\hat{x} \) \(\hat{p}_x \) والإندفاع.

\[[\hat{x}, \hat{p}_x] = i\hbar \]

(3)

4. علاقة الإكتمال لأساس الحالات الذاتية للموضع:

\[\int \lvert x \rangle \langle x \rvert dx = \hat{1} \]

(4)

5. أصل هذه العلاقة: مؤثر الإسقاط على الفضاء الكلي يساوي مؤثر الوحدة. لدينا:

\[\int_{-\infty}^{+\infty} \lvert \psi(x) \rvert^2 dx = \int_{-a/2}^{a/2} \cos^2 \frac{\pi x}{a} dx = \int_{-a/2}^{a/2} \frac{1}{2} \left(1 + \cos \frac{2\pi x}{a} \right) dx \]

\[= \frac{1}{a} \left(x \biggr|_{-a/2}^{a/2} + a \sin \frac{2\pi x}{a} \biggr|_{-a/2}^{a/2} \right) \]

\[= \frac{1}{2} \lvert A \rvert^2 \left(a + \frac{a}{2\pi} \{ \sin \pi - \sin(-\pi) \} \right) = \frac{1}{2} \lvert A \rvert^2 \times a \]

(5)
ومنه لكي تكون الدالة ممكنة يجب أن يكون \(\psi \) حقيقياً موجباً.
احتمال أن يكون الجسم الموجود في المجال 4 هو:

\[
P = \int_{0}^{a/4} |\psi(x)|^2 dx = \frac{2}{a} \int_{0}^{a/4} \cos^2 \frac{\pi x}{a} dx = \frac{2}{a} \int_{0}^{a/4} \frac{1}{2} \left(1 + \cos \frac{2\pi x}{a} \right) dx
\]

\[
= \frac{1}{a} \left(x \right|_{0}^{a/4} + a \sin \frac{2\pi x}{a} \right|_{0}^{a/4} = \frac{1}{a} \left(1 + \frac{1}{2\pi} \right) = \frac{1}{4} + \frac{1}{2\pi} \approx 0.409
\]

بما أن الدالة الموجية متناصلة بالنسبة لنقطة 0 (كونها دالة زوجية) فإن احتمال تواجد الجسم في المجالين \(-a/2 < x < 0 \) و \(0 < x < a/2 \) يتآملا كلاهما يساوي 1/2. كما أن احتمال تواجد الجسم في الفضاء يساوي الواحد معناه أن احتمال تواجد الجسم في المجال 2 هو:

\[
P' = \frac{1}{2} - P = \frac{1}{4} - \frac{1}{2\pi} \approx 0.091
\]

التمرين الثاني:

الدالة السينية للمستقبلة عن الزمن \(\phi(x) \) Schrödinger معادلة:

\[
- \frac{\hbar^2}{2m} \frac{d^2 \phi(x)}{dx^2} + V(x)\phi(x) = E\phi(x)
\]

الدالة المرتبطة بالزمن معادلة Schrödinger:

\[
- \frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x)\psi(x,t) = i\hbar \frac{\partial \psi(x,t)}{\partial t}
\]

العلاقة بين حلول هاتين المعادلتين \(\psi(x,t) \) و \(\phi(x) \) من أجل الحالات المستقرة ذات الطاقة المحددة تماماً:

\[
\psi(x,t) = \phi(x) \exp \left(-iEt/\hbar \right)
\]

(1) ثابت التقنين. لدينا:

\[
\int_{-\infty}^{+\infty} |\phi(x)|^2 dx = |A|^2 \int_{0}^{+\infty} x^4 e^{-2\alpha x} dx
\]

\[
= |A|^2 \frac{4!(2\alpha)^{-4}}{4\alpha^5} = |A|^2 \frac{3}{4\alpha^5}
\]

حيث استخدمنا التكامل المطل (4) الذي تكون هذه الدالة مقتكنة يجب أن يكون \(\beta = 2\alpha \) و \(n = 4 \). ومنه:

\[
f_{-\infty}^{+\infty} |\phi(x)|^2 dx = 1
\]

\[
A = 2 \sqrt{\frac{\alpha^5}{3}}
\]

(2) القيم الوسطية لـ \(x \) و \(x^2 \) و الانحراف المعياري.

\[
\langle x \rangle = \int_{-\infty}^{+\infty} x|\phi(x)|^2 dx = \frac{4}{3} \alpha^5 \int_{0}^{+\infty} x^5 e^{-2\alpha x} dx = \frac{4}{3} \alpha^5 5!(2\alpha)^{-6} = \frac{5}{2\alpha}
\]

\[
\langle x^2 \rangle = \int_{-\infty}^{+\infty} x^2|\phi(x)|^2 dx = \frac{4}{3} \alpha^5 \int_{0}^{+\infty} x^6 e^{-2\alpha x} dx = \frac{4}{3} \alpha^5 6!(2\alpha)^{-7} = \frac{15}{2\alpha^2}
\]

\[
\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{15}{2\alpha^2} - \frac{25}{4\alpha^2}} = \frac{\sqrt{5}}{2\alpha}
\]
\(\textbf{ج)} \) عبارة الكمون \(V(x) \) في المجال 0. بتوعيض الطاقة وعبارة الدالة الموالية في معادلة:

التمثيل المصقول للمؤثر \(\hat{A} \) في الأساس (1|, 2|, 3|, لدينا:

\[
A_{11} = \langle 1| \hat{A} |1\rangle = \langle 1|a(1| - |2\rangle) = a \\
A_{12} = \langle 1| \hat{A} |2\rangle = -a \\
A_{ij} = a \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}
\]

(1) القيم وکاتات الذاتية لهذا المؤثر. نجل المعادلة:

\[
\det(\hat{A} - \lambda \hat{1}) = 0 \Rightarrow \begin{vmatrix} a - \lambda & -a & 0 \\ -a & a - \lambda & 0 \\ 0 & 0 & 2a - \lambda \end{vmatrix} = 0 \iff (a - \lambda)^2(2a - \lambda) - a^2(2a - \lambda) = 0
\]

\[
(2a - \lambda)[(a - \lambda)^2 - a^2] = 0 \iff (2a - \lambda)^2(-\lambda) = 0 \iff \begin{cases} \lambda = 0 \\
\lambda = 2a \end{cases}
\]

حل مضاعف (حل مضاعف) من أجل 0 = 0

• من أجل 0 = 0: نبحث عن الكات الذاتي ذو المركبات \((x, y, z) \)، والذي يحقق:

\[
a \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} x = y \\
z = 0 \end{cases}
\]

إذن الكات الذاتي المقطع الموافق للقيمة الذاتية هو:

\[
|p_1\rangle = \frac{1}{\sqrt{2}}(1, 1, 0) = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle)
\]
من أجل $\lambda = 2a$

$$a \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2a \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff x + y = 0$$

نختار أي شعاعين متعامدين ومتجانسين في هذا المستوى، مثلاً:

$$|p_2\rangle = \frac{1}{\sqrt{2}}(1, -1, 0) = \frac{1}{\sqrt{2}}(|1\rangle - |2\rangle), \quad |p_4\rangle = (0, 0, 1) = |3\rangle$$

هنا شعاعان ذاتيان للمؤثر A متوافقان للقيمة الذاتية $(\lambda = 2a)$ (المضاعفة).

القاعدة الذاتية

<table>
<thead>
<tr>
<th>القيمة الذاتية</th>
<th>الكاتب الذاتي</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$</td>
</tr>
<tr>
<td>2a</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
</tbody>
</table>

فيما يلي القيمة الذاتية

$$|\psi\rangle = \frac{1}{3}|1\rangle - \frac{2}{3}|2\rangle + \frac{2}{3}|3\rangle$$

احتمال الحصول على النتيجة 0 عند قياس الملمعنة A هو مربع نظري الإسقاط الكاتب ($|\psi\rangle$) على اللفضاء الجزئي المولد عن الملمعنة (A) وكون ($|p_1\rangle$, $|p_2\rangle$) مريح تكتب

$$P(0) = |\langle p_1|\psi\rangle|^2 = \left|\frac{1}{\sqrt{2}} \times \frac{1}{3} - \frac{2}{3} \frac{1}{\sqrt{2}} + 2 \times 0\right|^2 = \frac{1}{18} + \frac{4}{18} = \frac{5}{18}$$

احتمال الحصول على النتيجة 2a عند قياس الملمعنة A هو مربع نظري الإسقاط الكاتب ($|\psi\rangle$) على اللفضاء الجزئي المكون من الملمعنة ($|p_2\rangle$, $|p_3\rangle$)

$$P(2a) = |\langle p_2|\psi\rangle|^2 + |\langle p_3|\psi\rangle|^2 = \left|\frac{1}{\sqrt{2}} \times \frac{1}{3} + \frac{2}{3} \frac{1}{\sqrt{2}} + 2 \times 0\right|^2 + \left|\frac{2}{3}\right|^2 = \frac{5}{18} + \frac{4}{9} = \frac{13}{18}$$

كانت الجملة مباشرة بعد إجراء القياس

إذا كانت نتائج القياس هي 0، فإن الجملة مباشرة بعد إجراء القياس تصبح الموضعية A للقياس-$|p_1\rangle$, الذي يساوي ($|p_1\rangle$) الاستمراري ($|p_1\rangle$, $|p_2\rangle$, $|p_3\rangle$) على اللفضاء الجزئي المكون من الملمعنة ($|p_2\rangle$, $|p_3\rangle$).

$$|\psi\rangle = \hat{\Pi}_{23}|\psi\rangle = |p_2\rangle\langle p_2|\psi\rangle + |p_3\rangle\langle p_3|\psi\rangle = \left(\frac{1}{3} \frac{1}{\sqrt{2}} + \frac{2}{3} \frac{i}{\sqrt{2}}\right) |p_2\rangle + \frac{2}{3} |p_3\rangle$$

$$= \left(\frac{1}{6} + \frac{1}{3}i\right) |1\rangle - \left(\frac{1}{6} + \frac{1}{3}i\right) |2\rangle + \frac{2}{3} |3\rangle$$

لتنفيذ هذا الكاتب نقسامه على نظامه، الذي يساوي بتقسيم على الإسقاط 2a

$$|\psi\rangle = \frac{1}{\sqrt{26}}[(1 + 2i) |1\rangle - (1 + 2i) |2\rangle + 4|3\rangle] = \frac{1}{\sqrt{13}} (1 + 2i) |p_2\rangle + 2\sqrt{\frac{2}{13}} |p_3\rangle$$

مع العلم أن هذا الكاتب يصبح بعد إجراء القياس-ψ (موضعية) الذي نتائجه 2a على اللفضاء الجزئي المكون من الملمعنة ($|p_2\rangle$, $|p_3\rangle$).